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I. INTRODUCTION

This report is a summary of the work accomplished during the period

February i - March 15, 1975 under NASA Contract No. NGR22-009-818 to

Langley Research Center.

Our efforts during this period have been aimed at studying the flapping

aspect of bird flight, more specifically to formulate a mathematical model

to determine the aerodynamic loads on a wing in unsteady flapping motion.

Unlike most aeronautical applications where thrust and drag are separate

phenomena, in flapping flight the two are coupled and unseparable. In this

report we will refer to the combination of thrust and drag as the streamwise

force, represented by 'F '.
x

The general method we have adopted to handle this problem is the

momentum theorem which was chosen to ensure that no secondary contributions,

such as from leading edge suction, are lost through possible linearizations.

In Chapter II general forms of the momentum theorem are presented. To

demonstrate the usefulness of the momentum theorem, the induced drag of an

arbitrary wing in steady flow is determined by this method (Section 2.1),

which is the same as the result obtained by other methods.

Due to the complexity of the 3-D unsteady problem, first the 2-D un-

steady problem is undertaken. We are currently working on this problem,

an outline of which is presented in Section 2.2. Also an outline of the

proposed method to analyze the 3-D unsteady problem is given in Chapter III.

II. MOMENTUM THEOREM

The momentum theorem for the control volume shown in Fig. i is readily

derived in the form

i

V S+_

as (2.1)
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FI_, I

For inviscid flow with small body forces, the left hand side is given by

_i = reaction forces + pressure forces

i

= - Fbody - p n dS.

S

_body = - _ [P_ + 0Q(_ • _)] dS-

Assuming an impermeable body, Eq. 2.1 becomes

S V

For steady flow this reduces to

= _ ÷
+ - [P n + p_(Q _)] dS
Fbody

2.1 Steady Flow-Induced Dra$ of Arbitrary Wing

Equation 2.4 is an expression for the force experienced by a body

immersed in an inviscid steady flow. This result can be specialized for

the case of a uniform parallel free stream U . Introducing the non-

dimensional perturbation velocity

(2.2)

(2.3)

(2.4)

(2.5)

Equation 2.4 becomes
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= -_ [P +
n+

ody

2

(q + • dS. (2.6)

This result can be further simplified with the aid of continuity equation.

2÷÷_body = - [(P - Poo )_ + oUoo q(q
• _ + _ . _)3 dS (2.7)

where insertion of P into this equation does not change the result since

P ndS= 0 .
O0

Now, we will proceed to determine the induced drag (streamwise component

of the force on the body) on an arbitrary wing in a uniform, parallel, con-

stant density ( p = p_ ) flow. The control volume and the coordinate axes

are sho_ in Fig. 2. Sz

0 \

n _ N

F'I&, 1

The cylindrical surface'S 2' is chosen far away from the body where

disturbances have died out and the flow is parallel, and 'S3' is far down-

stream of the wing. Recalling now that

-_ -_ -4. -_

q = _x i + _y J + _z k ,

-9-

The streamwise component of Fbody is

Di =- ]I (P -P°°)dS3- Ooo U_ 2 II _x(l + _x) dS3 "

S3 S3

(2.8)
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The integrand of the first integral on the right hand side may be expressed

in terms of the perturbantion velocity componentsas follows. Pressure co-

efficient is defined as

P-P_
C =
p i 2

One form of Bernoulli's equation is

P

___+ 1 2) I de + (__t 2 (Q2 _ U_ + -_

P=

For the present case this results in

- _)=0.

(2.9)

(2.10)

p - P_

I 2)P= .__ (Q2_U_ (2.11)

Putting this into 2.9

C = I - Q2
2 n

P U_

or in terms of the perturbation velocity

(2.12)

-_ --> -)- -9-

I
_ ( _x 2 + _y2 + _z 2 + 2 _x ) .

(2.13)

Combining this last result with 2.9 we get

p _ p_ = i 2 2 2 _z 2- _ 0_ U= ( Cx + by + + 2_ x ) .
(2.14)

Puttlng this into 2.8 we obtain

U= 2 II ( _y2 + _z2 - _x2) dS3 •

S3

(2.15)

Assuming a flat 2-D wake as is commonly done ( _x = 0)
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1 2[[ 2 2Di = _ p= U=, ( #y + _z ) dS3 " (2.16)
JJ

S3

To facilitate evaluation of this integral we make use of the 2-D form

of Green's theorem:

For

II [ _1 V 2 +2

S

_i = _2 = _ and V2_

V¢I . V_ 2] dS = - _ ¢I--

C

= 0, this reduces to

_2

_n

ds . (2.17)

( )2 dS = - _ ds

S C

or

ds
I.[ ( _y2 + _z 2) dS = - _¢ _--_ •

S C

(2.18)

Using this result in 2,16 we get

i 2 _ _ ds (2.19)Di=- _ 0= U _ Bn '

C

where "C" is the integration contour in the Trefftz plane as shown in Fig. 3.

Y

FIG,B
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In the limit of R + and e + 0 the only contribution to the above

integral comes from around the flat wake.

b12 b12

D i = - g P= Um 0u dy + 0£ --_z dy

-b/2 -b/2

b/2

1 2 i _d_ dy= -_ 0= ,u= A¢ Bz

-b/2

b/2

= - _ Pco Uoo ( A¢ )wake (W)x=oo dy

-b/2 x=oo z=O

where the integrand consists of the product of C-discontinuity across

the wake and the vertical component of induced velocity at the wake, far

downstream of the wing. Expressions for these are readily available in

aerodynamic texts (e.g., see Ashley and Landahl, Section 7.3).

(2.20)

( A¢ )wake = r(y)/U=

5/2

i _ d r /dy 1

(W)x=Qo = 27 U= J Y - Yl dYl "

z=0 -b/2

Putting these results into the last form of 2.20, we obtain the well known

result

b12 b/2

i I dYldYP=o r(y) r'(yl)y _ YlDi = 4'])"

-b/2 -b/2

Making the transformation

(2.21)

(2.22)

(2.23)

y = (b/2) cos 0 (2.24)



and assuming a Glauert series for wing circulation distribution
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r(0)= u b [ A sin(nO) (2.25)
n

n=l

the inner integral in 2.23 may now Be evaluated using the Glauert integral.

b/2

f dyl =o i cos (n@l)r'(yI) 2 u _ n An
y_y--_= oo cos @1 cos 9 d 91

-b/2 n=l 0

•: 2 _ Uoo [ n An sin (nO) (2.26)
sin O

n=l

Putting 2.26 into 2.23 and making use of the properties of orthogonal functions

we finally obtain

2 b2 An2Di-_ = _ _ n .
n=l

Given the spanwise load distribution for a wing, one can determine

'A's from the theory of Fourier series, and Eq. 2.27 gives the induced
n

or vortex drag for the wing. The form of 2.27 obviously suggests that the

higher harmonics of the Glauert series add drag without increasing lift

(which can be shown to be L z 2 b 2
= _ 0_ .Uoo AI). Hence minimum induced

' is present This is the well known casedrag is achieved when only 'A1

of elliptic loading which is

(2.27)

re) = L b AI A - y2/(b/2) 2 .

The induced drag for this case is

(2.28)

= _ AI2 2 b 2
Dimi n

,_ o= u (2.29)



2.2 Unsteady Flow--StreamwlseForce on 2-DOsc_llatingAirfoil

The unsteady form of the momentum theorem presented in Chapter II

gives the force experienced by a rigid body in unsteady motion.

-8-

S V

(2.3)

Now, we desire to derive an expression for the streamwise force on the

body in terms of the perturbation potential, for the case of a uniform,

parallel, constant density flow (see Fig. 2). Introducing the perturbation

velocity (see Eq. 2.5), the x-component of 2.3 becomes

ff f; ds3F (P P_) dS 3 pU_ 2 (_ x
X

S 3 S3

V

As in Section 2.1 we can use Bernoulli's equ. to express (P - P
co

in terms of perturbation velocity components as shown below.

C = 2 +I _ Q2
p U _t 2

Hence,

_z 2 2= _ [ _x 2 + _y2 + + 2 _x +U--_- _t ] "

(2.30)

l 2[ 2 2P-P= =-yp= U= _x + _y +

Putting 2.31 into 2.30 we get

2
_z 2 + 2 _x +U--- _t ] "

OO

(2.31)

, i 2ff
S3

[ _by2 + dpz2 -

2

@x2 +_- @t ] dS 3

V

(2.32)



-9-

Due to the complexity of the three dimensional problem it is advisable

to work out the problem in two dimensions first. Weare currently working

on formulating the two dimensional problem to determine the streamwise force

on a 2-D oscillating airfoil. The wake of this airfoil consists of a continuous

5and of spanwlse vortices, of variable strength, shed from the trailing edge.

No streamwlse vortices, however, are present in the wake which renders the

problem more manageable. The following is an outline of our current work

on this problem.

i. Assume a thln airfoil at small angle of attack performing small amplitude

oscillations in a uniform flow, producing a flat wake.

2. Since the flow field is governed by a linear equation (V2_ = 0) we can

use the principle of superposltion to build up the potential from the

potential of the individual vortices making up the wake.

3. Put the potential into 2.32 (with _y = 0), average over time, and carry

out the integration to obtain the average streamwise force on the airfoil.

The result obtained from the present method (momentum theorem) should be in

agreement with the result obtained by von Karman and Burgers (see Ref. 3,

p. 306). They directly calculate the force on _ 2-D, plane, oscillating airfoil.

III. GENERAL METHOD

The following is a brief outline of the proposed method to determine an

optimum full-span flapping wing configuration.

i. Equation 2.32 of the preceding section is an expression for the stream-

wise force experienced by an arbitrary aerodynamic configuration in

three-dimensional unsteady flow.

Fx y u [ + Cz2 2 +u

S3

V

(3.1)



e

e

4.

.

Assume a perturbation potential consisting of a steady part and an

unsteady part of the following general form.

t)= (7)+

(t - x/U )
ao

e

Put 3.2 into 3.1 and average over time.

Use variational methods to determine a ' _' that would optimize this

average.

Knowing '_ ' construct a wing configuration with proper time dependent

displacements giving rise to such a potential.

-i0-

(3.2)

It must be noted that the wake of the three dimensional flapping wing

consists of a distribution of both spanwise and streamwise vortices, making

the problem much more difficult than the two dimensional one. Appropriate

simplifying assumptions will have to be formulated along the way to make the

problem tractable.

IV. PROPOSED EXPERIMENTAL INVESTIGATIONS

There has been some discussion on the subject of experimental work

dealing with the aerodynamics of bird flight. Thus far, this discussion has

centered on the construction of a wind tunnel model of a three-dimenslonal

flapping wing which would be tested in a low-speed air flow. The time varia-

tion of aerodynamic forces and moments would be measured and compared to

theoretical predictions. The basic model configuration might be a wing of

elliptic planform, flapping sinusoidally. The model would be of such size

as to approximately correspond to the actual size of a medium to large

bird's wing.

Perhaps the greatest foreseeable problem in the design and construction

of such a model is the measurement of the desired forces and moments with

sufficient accuracy to render the test results meaningful. Other aspects

of design that deserve serious consideration are the relative merits of
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full-span and seml-span models and the exact nature of the flapping driving

mechanisms.

Once an adequate flapping mechanism is built, the test possibilities

are manifold. Models of different planform could be substituted for the

nominal elliptic planform, including actual bird wing planforms. Velocity

measurements in the wake and the application of flow visualization techniques

could contribute substantially to the understanding of the geometry of the

unsteady wake. (Present theoretical calculations make assumptions about the

wake that render the mathematics manageable, but which may not, in fact, be

Justified.) A flexible or partially flexible model of a bird wing could be

tested to explore the role aerodynamic compliance may play in determining

the efficiency of bird flight. The possibilities are indeed open-ended re-

quiring that each progressive phase of testing be carefully evaluated to

facilitate the decision concerning the successive stages of investigation.

Initial efforts will be directed toward building and testing a simple rigid

flapping wing.



SYMBOLS

b,

Cp

D i

Fbody

i

S

L

n

P

q

Q

r

s

S

t

U

V

W

X

y.

Z

span

pressure coefficient

induced drag

force on body

unit vector in x-direction

unit vector in y-direction

unit vector in z-direction

lift

unit normal vector

pressure

perturbation velocity

total velocity

position vector (= x_ + y_ + z_)

arc length

surface area

time

speed

volume

vertical component of velocity

streamwise coordinate

spanwise coordinate

vertical ccordinate
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P

F

0_

density

perturbation velocity potential

total velocity potential

circulation

frequency
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Subscripts

( )A lower

( )u upper

( )_ free stream conditions
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